这一工艺的目的是获得适合后序齿轮切削加工的硬度和为终热处理做组织准备,以有效减少热处理变形。优质差速器加工一般的正火由于受人员、设备和环境的影响比较大,使得工件冷却速度和冷却的均匀性难以控制,造成硬度散差大金相组织不均匀,直接影响金属切削加工和终热处理。对于齿轮定位基准的选择常因齿轮的结构形状不同,定位基准有所差异。带轴齿轮主要采用顶尖定位,孔径大时则采用锥堵,顶尖定位的精度高且能做到基准统一。优质差速器加工要求渗碳淬火,以保证其良好的力学性能。对于热后不再进行磨齿加工的产物,稳定可靠的热处理设备是必不可少的。
由于通过将机床的各运动轴进行颁狈颁控制及部分轴间进行联动后,具有以下优点:增加了机床的功能,如滚削小锥度及鼓形齿轮等变得极为简单。优质差速器加工缩短了传动链,同时采用半闭环或全闭环控制后,通过数控补偿可以提高各轴的定位精度和重复定位精度,从而提高了机床的加工精度及颁辫值,增加了机床的可靠性。优质差速器加工换品种时由于省去了计算及换分齿挂轮及差动挂轮、进给及主轴换挡的时间,插齿机还省去了换斜导轨的时间,从而减少了辅助加工时间,增加了机床的柔性。由于机械结构变得简单了,可以设计得更有利于提高机床的刚性及把热变形降到底。
齿轮加工基准定位,定位基准的精度对齿形加工精度有直接的影响。轴类齿轮的齿形加工一般选择孔定位,某些大模数的轴类齿轮多选择齿轮轴颈和一端面定位。优质差速器加工盘套类齿轮的齿形加工常采用两种定位基准。内孔和端面定位,齿轮加工选择既是设计基准又是测量和装配基准的内孔作为定位基准,既符合“基准重合”原则,又能使齿形加工等工序基准统一,只要严格控制内孔精度,优质差速器加工在专用芯轴上定位时不需要找正。故生产率高,广泛用于成批生产中。外圆和端面定位,齿轮加工齿坯内孔在通用芯轴上安装,用找正外圆来决定孔中心位置,故要求齿坯外圆对内孔的径向跳动要小。因找正效率低,一般用于单件小批生产。
研磨轮与被研齿轮的轴线平行,研磨时被研齿轮带动研磨轮作无侧隙的自由啮合运动,被研齿轮还作轴向往复运动,优质差速器加工研磨轮被轻微制动。经一段时间后,研磨轮 和被研磨轮作反向旋转,使齿的两个侧面被均匀研磨。由于大连齿轮加工齿面的滑动速度不均匀,研磨量也不均匀,在齿顶及齿根部分的滑动速度大,研磨量也大。优质差速器加工插齿能用在一些滚齿不能加工的位置上,如内齿和退刀距离过短的双联或多连齿轮。在齿轮的精加工有剃齿和磨齿。同样是展成法,剃齿的优点是效率高但不能用于硬齿面,磨齿就相反。
运行中减速器的铁芯会在交变磁场中产生铁损。当绕组通电时,将发生铜损,并且将发生其他杂散损耗。优质差速器加工这些会增加齿轮减速器的温度。另一方面,减速器也散热,当热量和热量相等时,达到平衡状态,温度不升高并稳定在一个水平。当热量增加或热量减少时,平衡被破坏,温度继续升高,温度差增加,热量增加,并且在另一个更高的温度达到新的平衡。优质差速器加工在运行过程中会受到温度的影响,因此在减速器工作时必须保持稳定的温度,这样齿轮减速器才能更好地工作,延长其使用寿命。